Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Internal Medicine ; (12): 841-849, 2023.
Artigo em Chinês | WPRIM | ID: wpr-985994

RESUMO

Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.


Assuntos
Camundongos , Masculino , Animais , Fibrose Pulmonar/patologia , Agonistas de Receptores de Canabinoides/metabolismo , Colágeno Tipo I/farmacologia , Colágeno Tipo III/farmacologia , Hidroxiprolina/farmacologia , Cloreto de Sódio/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/patologia , Canabinoides/efeitos adversos , Bleomicina/metabolismo , Colágeno/metabolismo , Inflamação/patologia , RNA Mensageiro/metabolismo
2.
Acta cir. bras ; 33(2): 144-155, Feb. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-886256

RESUMO

Abstract Purpose: To evaluate the efficacy of the application of the human amniotic membrane (HAM) on the inflammatory process, fibroblast proliferation, formation of collagenand reduction of skin wound areas in rats. Methods: Thirty six rats were submitted to a surgical injury induction and divided into two groups (n = 18): group C (control) and T (treated with the HAM). The macroscopic evolution in the wound area and the histological characteristics of the skin samples were evaluated. Results: The regression of the wound area was greater in group T. The histological analysis revealed a significant reduction (p < 0.05) in the inflammatory infiltrate in group T at all experimental periods compared with that in the control group. Furthermore, the group T presented a significant increase in the proliferation of fibroblasts at 14 and 21 days compared with group C (p < 0.05). Regarding the deposition of mature collagen fibers, there was an increase in the replacement of type III collagen by type I collagen in group T (p < 0.05). Conclusion: Treatment with the HAM reduced the healing time as well as the inflammatory responses, increased the proliferation of fibroblasts, and induced a higher concentration of mature collagen fibers.


Assuntos
Humanos , Animais , Masculino , Ratos , Pele/lesões , Cicatrização/fisiologia , Curativos Biológicos , Colágeno/farmacologia , Âmnio/transplante , Pele/patologia , Cicatrização/efeitos dos fármacos , Distribuição Aleatória , Ratos Wistar , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , Colágeno Tipo III/metabolismo , Colágeno Tipo III/farmacologia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Âmnio/química , Inflamação/metabolismo
3.
J. appl. oral sci ; 22(1): 29-37, Jan-Feb/2014. graf
Artigo em Inglês | LILACS, BBO | ID: lil-699912

RESUMO

Objective: To analyze Mucograft®(MG), a recently introduced collagen matrix, in vitro and in vivo, and compare it with BioGide®(BG), a well-established collagen membrane, as control. Material and Methods: A detailed analysis of the materials surface and ultra-structure was performed. Cellular growth patterns and proliferation rates of human fibroblasts on MG and BG were analyzed in vitro. In addition, the early tissue reaction of CD-1 mouse to these materials was analyzed by means of histological and histomorphometrical analysis. Results: MG showed a three-fold higher thickness both in dry and wet conditions, when compared to BG. The spongy surface of BG significantly differed from that of MG. Cells showed a characteristic proliferation pattern on the different materials in vitro. Fibroblasts tended to proliferate on the compact layers of both collagens, with the highest values on the compact side of BG. In vivo, at day three both materials demonstrated good tissue integration, with a mononuclear cell sheet of fibroblasts on all surfaces, however, without penetrating into the materials. Conclusions: The findings of this study showed that MG and BG facilitate cell proliferation on both of their surfaces in vitro. In vivo, these two materials induce a comparable early tissue reaction, while serving as cell occlusive barriers. .


Assuntos
Humanos , Animais , Feminino , Camundongos , Materiais Biocompatíveis/farmacologia , Proliferação de Células , Colágeno Tipo I/farmacologia , Colágeno Tipo III/farmacologia , Fibroblastos/citologia , Sobrevivência Celular , Células Cultivadas , Colágeno/farmacologia , Imuno-Histoquímica , Teste de Materiais , Distribuição Aleatória , Reprodutibilidade dos Testes , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA